Test for high dimensional partially linear models

نویسندگان

چکیده

In this paper, we study the hypothesis test for regression coefficients of partially linear models when number covariates in part diverges. We propose a U-type statistic. Asy...

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive group bridge estimation for high-dimensional partially linear models

This paper studies group selection for the partially linear model with a diverging number of parameters. We propose an adaptive group bridge method and study the consistency, convergence rate and asymptotic distribution of the global adaptive group bridge estimator under regularity conditions. Simulation studies and a real example show the finite sample performance of our method.

متن کامل

SCAD-Penalized Regression in High-Dimensional Partially Linear Models

We consider the problem of simultaneous variable selection and estimation in partially linear models with a divergent number of covariates in the linear part, under the assumption that the vector of regression coefficients is sparse. We apply the SCAD penalty to achieve sparsity in the linear part and use polynomial splines to estimate the nonparametric component. Under reasonable conditions, i...

متن کامل

infinite dimensional garch models

مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...

15 صفحه اول

Doubly robust and efficient estimators for heteroscedastic partially linear single-index models allowing high dimensional covariates.

We study the heteroscedastic partially linear single-index model with an unspecified error variance function, which allows for high dimensional covariates in both the linear and the single-index components of the mean function. We propose a class of consistent estimators of the parameters by using a proper weighting strategy. An interesting finding is that the linearity condition which is widel...

متن کامل

Author's personal copy Profiled adaptive Elastic-Net procedure for partially linear models with high-dimensional covariates

We study variable selection for partially linear models when the dimension of covariates diverges with the sample size. We combine the ideas of profiling and adaptive Elastic-Net. The resulting procedure has oracle properties and can handle collinearity well. A by-product is the uniform bound for the absolute difference between the profiled and original predictors. We further examine finite sam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Statistics

سال: 2021

ISSN: ['1532-415X', '0361-0926']

DOI: https://doi.org/10.1080/03610926.2020.1861297